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Indirect combustion noise
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An analysis is made of the noise generated during the passage of quiescent
temperature/entropy inhomogeneities through regions of rapidly accelerated mean
flow. This is an important source of jet engine core noise. Bake et al. (J. Sound Vib.,
vol. 326, 2009, pp. 574–598) have used an ‘entropy wave generator’ coupled with a
converging–diverging nozzle to perform a series of canonical measurements of the
sound produced when the inhomogeneity consists of a nominally uniform slug of
hot gas. When flow separation and jet formation occur in the diffuser section of the
nozzle, it is shown in this paper that the vortex sound generated by the jet is strongly
correlated with the entropy noise produced by the slug and that the overall noise level
is significantly reduced. Streamwise ‘stretching’ of the hot slug during high subsonic
acceleration into the nozzle and the consequent attenuation of the entropy gradient
in the nozzle are shown to significantly decrease the effective rate at which indirect
combustion noise increases with the Mach number. Numerical predictions indicate
that this is responsible for the peak observed by Bake et al. in the entropy-generated
sound pressure at a nozzle Mach number near 0.6.
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1. Introduction
Unsteady combustion is a major source of the noise produced by gas turbines,

industrial furnaces and other propulsive devices (Strahle 1971, 1978; Crighton et al.
1992; Poinsot & Veynante 2005; Leyko, Nicoud & Poinsot 2009). Freely burning gas
constitutes an acoustic ‘monopole’ source of strength determined by the volumetric
rate of expansion in the combustion zone, a mechanism whose efficiency is greatly
increased by the stretching of flame fronts by turbulence velocity fluctuations (Strahle
1978). This noise is frequently augmented in confined systems by secondary or
‘indirect’ combustion sources that arise during acceleration of unevenly heated
combustion products through the system exhaust and is manifested as a ‘dipole’
acoustic source involving interactions between temperature ‘hot spots’ and mean
flow variations. The dipole strength is proportional to the force perturbation needed
to accelerate temperature disturbances at the same rate as the surrounding gas. It
is often called ‘entropy noise’ and was first investigated analytically at low Mach
numbers by Candel (1972), Marble (1973) and Morfey (1973) and later by Ffowcs
Williams & Howe (1975), Howe (1975) and Lu (1977); numerical treatments at higher
Mach numbers were given by Bohn (1977), Cumpsty & Marble (1977a, b), Marble &
Candel (1977), Cumpsty (1979) and Bloys (1979). The application of Marble &
Candel (1977) to high-Mach-number nozzle flow was based on a linearization of the
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unsteady motion that treated the nozzle as a compact element across which flow
quantities varied discontinuously. The method was extended by Cumpsty & Marble
(1977a, b) and Cumspty (1979) to study entropy noise produced in a gas turbine at
the combustor outlet and turbine blade stages. The outlet flow is usually ‘choked’,
and the indirect combustion noise is therefore related to the unsteady volume or mass
flux occurring when temperature inhomogeneities enter the outlet throat, producing
fluctuations in the choked sound speed. Muthukrishnan, Strahle & Neale (1978)
deduced from experiments with choked nozzles that indirect entropy noise is the
principal source of the engine ‘core noise’. It was concluded for such flows by Leyko
et al. (2009) that the linearized acoustic theory of Marble & Candel (1977) agrees well
at very low frequencies with numerical predictions made using the Euler equations
of motion, provided all length scales (including that of the entropy disturbances) are
much larger than the nozzle.

According to Bake, Michel & Rohle (2007), a proper analytical understanding of
the indirect noise source is still lacking and can be obtained only by a comparison of
theoretical predictions with careful experiment. To do this they and Bake et al.
(2009a, b) performed a series of canonical experiments using an ‘entropy wave
generator’. These involved the measurement of the sound generated during controlled
high-speed convection of a slug of hot gas through a converging–diverging nozzle.
The hot slug is regarded as an idealized product of combustion, and it is argued that
a study of the sound-source mechanism in this case should provide improved insight
into the production of sound by a real inhomogeneous combustion outflow. The
experiment is a much-improved and sophisticated version of a similar arrangement
used previously by Zukoski & Auerbach (1976) and Bohn (1977) at the California
Institute of Technology, in which, however, the temperature excess of the slug was
limited to about 1 K.

Bake et al. (2009b) asserted that indirect combustion noise is dipole in character
and that its mechanism of generation must be similar to that produced by turbulence
and other vortex sources in confined flows, so that the overall contributions from the
two sources are not independent and should not be considered in isolation. However,
their numerical simulations were incapable of quantifying the separate effects of the
entropy and vortex sources in their experiment. Such coupling of thermal and vortex
sources is included in the widely used linear theory of Marble & Candel (1977), but
according to Bake et al. (2009a), predictions are too low at nozzle Mach numbers Mt

less than about 0.6 and too high when Mt > 0.7. Numerical and analytical methods
for the supersonic case have been discussed by Leyko et al. (2009) and by Muhlbauer,
Noll & Aigner (2009).

The experiments of Bake et al. (2009b) are the motivation for the reappraisal of
the earlier theoretical work on indirect combustion noise discussed in this paper. The
general entropy noise problem is formulated in the context of these experiments in
§§ 2 and 3. Application is made in § 4 to determine the indirect combustion noise
generated when an ideal slug of hot gas (i.e. one having sharp-fronted interfaces
with the ambient flow) convects at high subsonic speed through a converging–
diverging nozzle. The results are extended to include the possible impact on the
generated sound of large-scale separation of the flow from the wall of the nozzle
diffuser, leading to the conclusion that the additional contribution from vortex sound
sources causes an overall reduction in the entropy noise. In both cases the indirect
combustion noise is predicted to increase with the throat Mach number Mt for an
idealized hot slug, in qualitative agreement with data reported by Bake et al. (2009b)
for Mt < 0.6. According to experiment, however, the peak acoustic pressure stops
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increasing at Mt ∼ 0.6, beyond which there is a levelling off and a small decrease, and
flow separation apparently does not occur. Vorticity production in the nozzle cannot,
therefore, account for this decrease. The discrepancy between theory and experiment
is discussed in detail § 5, where it is argued that peak pressure saturation occurs
because of the progressive increase with the Mach number of the thickness of the
slug ‘interface’, across which the temperature rises from the local ambient temperature
to that of the hot slug. This increase is produced by stretching of the transition region
during convection through the rapidly accelerated nozzle mean flow, an effect that is
exacerbated by the increasing flow Mach number. Excellent agreement with the data
of Bake et al. (2009b) is obtained when the finite thickness of the slug transition zone
is taken into account, although there remains some uncertainty about the extent to
which wavefront thickness was properly controlled in the experiments.

2. The governing equations
2.1. Equation of aerodynamic sound

Sound in a fluid with stationary boundaries is generated by unsteady distributions of
vorticity and by their interactions with the boundaries and by thermodynamically irre-
versible phenomena usually associated with combustion. The hot and thermodynam-
ically inhomogeneous flow in a jet engine or rocket motor occurs at a sufficiently large
Reynolds number such that the transfer of momentum and heat by molecular diffusion
within the body of the flow can usually be neglected. This generally implies that the
dominant fluid motions occur isentropically and that all effects of molecular diffusion
are confined to low-velocity regions immediately adjacent to solid boundaries.

Consider a perfect gas and take the momentum equation governing the motion at
x =(x, y, z) within the fluid at time t in Crocco’s form (Howe 1998):

∂v

∂t
+ ∇B = −ω ∧ v + T ∇s − η

ρ
curl ω, (2.1)

where v is the velocity; ω =curl v is the vorticity; ρ, T and s are respectively the
density, temperature and specific entropy; and η is the shear coefficient of viscosity.
Further, B is the total enthalpy:

B = cpT + 1
2
v2, (2.2)

where cp is the ratio of specific heats at constant pressure. It is assumed in (2.1) that
viscous effects are important only near boundaries, and only the principal viscous
shear stress term has been retained.

Multiply (2.1) by the density ρ and take the divergence, to obtain

div

(
ρ

∂v

∂t

)
+ div(ρ∇B) = −div(ρω ∧ v − ρT ∇s), (2.3)

provided η may be taken to be constant. This is transformed into an acoustic analogy
equation (Lighthill 1952; Howe 1998) for B by the procedure described in detail by
Howe (2002, § 5.2.1) for the simpler case of homentropic flow (where s = constant).

The equation of continuity and the thermodynamic relation cpdT = dp/ρ + T ds,
where p denotes pressure, are used to show (without approximation) that

div

(
ρ

∂v

∂t

)
= −ρ

D

Dt

(
1

ρ

∂ρ

∂t

)
≡ −ρ

D

Dt

(
1

ρc2

∂p

∂t

)
+ ρ

D

Dt

(
βT

cp

∂s

∂t

)
, (2.4)
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where c is the speed of sound; β =(−1/ρ)(∂ρ/∂T )p is the coefficient of expansion;
and D/Dt = ∂/∂t + v · ∇ is the material derivative. Similarly, the momentum equation
(2.1) supplies the relation

1

ρ

∂p

∂t
=

DB

Dt
− T

Ds

Dt
+

η

ρ
v · curlω. (2.5)

For isentropic flow Ds/Dt = 0 and viscous effects can be neglected in the body
of the fluid, so that when (2.4) and (2.5) are used to replace the first term on the
left-hand side of (2.3) we find that(

ρ
D

Dt

(
1

c2

D

Dt

)
− ∂

∂xj

(
ρ

∂

∂xj

))
B = div(ρω ∧ v − ρT ∇s) + ρ

D

Dt

(
βT

cp

∂s

∂t

)
, (2.6)

where the repeated subscript j implies summation over all three spatial coordinates.
In the absence of vorticity and entropy fluctuations, and of moving boundaries,

Bernoulli’s equation implies that the total enthalpy B is constant throughout the
flow. In the more general, unsteady case the motion outside the region occupied by
vorticity and entropy inhomogeneities is irrotational, and the corresponding variations
in B are equal to −∂ϕ/∂t , where ϕ(x, t) is a suitable velocity potential. The right-
hand side of (2.6) therefore identifies the vortex and entropic sources responsible for
these variations, which vanish in their absence. The final term on the right-hand side
represents a predominantly monopole source arising from volumetric expansion of the
fluid in the source region produced, for example, by heat addition. The divergence term
accounts for the production of sound by the vortex motions and entropy gradients,
the latter serving to ‘scatter’ near-field pressure fluctuations (p = ρRT, where R is the
gas constant) into sound. In the acoustic region (2.5) indicates that fluctuations in B

are related to the acoustic pressure by

1

ρ

∂p

∂t
=

DB

Dt
. (2.7)

This reduces to p � ρoB ≡ −ρo∂ϕ/∂t when the far-field, mean flow Mach number is
very small, where ρo is the corresponding mean density.

The coefficients in the differential operator on the left-hand side of (2.6) account for
nonlinear effects of propagation because local values of ρ, c and the flow velocity v are
strictly dependent on the acoustic disturbance. In a general, large-scale turbulent flow
spanned by many characteristic acoustic wavelengths, the vortex source and entropy
sources are also responsible for the scattering and refraction of sound. However, in
order to calculate the radiation to first order in the entropy perturbation it is sufficient
to replace ρ, c and v where they appear on the left-hand side of (2.6) by their local
mean values. Similarly, the final monopole source on the right-hand side vanishes to
first order in the perturbation entropy.

2.2. Application to indirect combustion noise generated by an ideal slug of hot gas

Equation (2.6) will be used to examine the generation of sound during the passage of a
hot slug of gas through a nozzle in a high-speed duct flow. The mathematical problem
is illustrated schematically in figure 1 and is intended to model the production of
indirect combustion noise in the entropy wave generator of Bake et al. (2009a, b). Air
of temperature To, density ρo and pressure po = ρoRTo flows at uniform speed Uo in
a semi-infinite circular cylindrical duct of cross-sectional area A1 into a converging–
diverging nozzle that discharges smoothly into an infinite circular cylindrical duct of
area A2. The flow is subsonic everywhere and is assumed to be isentropic.
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xB(t) xF (t)
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Figure 1. Schematic of the experiment performed by Bake et al. (2009a, b).

In this section attention is confined to the idealized case in which the inlet flow
contains a uniform slug of heated air (shaded portion in figure 1) that is initially of
uniform temperature Ts > To and is at the local equilibrium pressure po and which
convects steadily at the uniform flow velocity Uo. In the experiment �T = Ts − To is
typically about 10◦C and �T/To � 1. Take the coordinate origin at O on the axis of
symmetry at the nozzle throat, with the x axis in the direction of the mean flow. In a
first approximation the mean flow is assumed to be quasi-one-dimensional, with the
conditions uniform over each cross-section. The position of the heated slug at time
t can then be specified by the x coordinates xF (t), xB(t), say, of the front and back
faces of the slug, as indicated in figure 1.

Sound is generated because of the unsteadiness created when the slug is accelerated
through the nozzle. Measurements reported by Bake et al. (2009a, b) indicate that
the acoustic amplitude is proportional to �T/To. This ratio determines the entropy
excess of the hot slug relative to the ambient air. Because it is small it is sufficient to
evaluate the entropy source on the right-hand side of (2.6) correct to O(�T/To). If
the vortex source ω ∧ v in (2.6) is temporarily ignored, one can replace the variable
coefficients involving ρ, c, T , v in the equation by their local mean values, so that
they may be regarded as functions of position alone within the nozzle.

Before the slug enters the nozzle the temperature distribution in the upstream duct
is given by

T = To + �T {H (xF (t) − x) − H (xB(t) − x)}, (2.8)

where H (·) denotes the Heaviside step function, and the second term on the right-
hand side is non-zero only within the interval xB < x < xF occupied by the slug.
Then the formula

s = cp ln T − R ln p + constant (2.9)

for the specific entropy of a perfect gas implies, to first order in �T/To, that

∇s =
cp�T

To

{δ(xB(t) − x) − δ(xF (t) − x)}i, (2.10)

where i is a unit vector in the x direction. This formula remains valid at all subsequent
times as the slug convects through the nozzle, provided the motion is isentropic and
the flow can be regarded as approximately one-dimensional.

Before the hot slug enters the nozzle, and before sound is produced, the entropy
gradient (2.10) implies the existence of a corresponding gradient in the total enthalpy
at the front and rear faces of the slug. According to definition (2.2) the initial
distribution of B ≡ Bo, say, where ∇Bo = To∇s. This gradient characterizes a non-
acoustic variation of B that convects through the system at the variable mean flow
velocity, and Bo represents an incoming solution of (2.6). Indeed, far upstream of the
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nozzle (2.6) reduces to

−∇ · (ρ∇Bo) = −∇ · (ρTo∇s) (2.11)

(because DBo/Dt = 0), and this relation is also satisfied during the passage of the
slug through the contraction.

The acoustic component of B with outgoing wave behaviour is therefore isolated
by putting

B̂ = B − Bo. (2.12)

By recalling (refer to the end of § 2.1) that the final monopole on the right-hand side
of (2.6) can be neglected, we find that B̂ is determined by(

ρ
D

Dt

(
1

c2

D

Dt

)
− ∂

∂xj

(
ρ

∂

∂xj

))
B̂ = div(ρω ∧ v − ρ(T − To)∇s), (2.13)

which is to be solved subject to the condition that far from the contraction B̂ consists
entirely of outgoing acoustic disturbances.

2.3. Solution using a Green’s function

The nonlinear wave operator on the left-hand sides of (2.6) and (2.13) is self-adjoint
(Möhring 1980; Howe 1998). The solution B̂(x, t) of (2.13) can therefore be determined
by using a Green’s function that satisfies(

ρ
D

Dτ

(
1

c2

D

Dτ

)
− ∂

∂yj

(
ρ

∂

∂yj

))
G = ρδ(x − y)δ(t − τ ), G = 0 for τ > t, (2.14)

where y =(x ′, y ′, z′). Further, G(x, y, t, τ ) is an ‘advanced potential’ that propagates
as a function of ( y, τ ) as an ‘incoming’ wave converging on the singularity at y = x
at time τ = t and vanishing thereafter. It is assumed that where ρ, c and v occur
explicitly and within the operator D/Dτ in (2.14) they are to assume their steady
values for undisturbed mean flow through the nozzle.

A formal representation of the solution of (2.13) can be obtained by the familiar
procedure that leads to Kirchhoff’s solution of the classical wave equation (Morse &
Feshbach 1953; Baker & Copson 1969; Howe 1998). The variables (x, t) in (2.13) are
replaced by ( y, τ ), and the equation is multiplied by G(x, y, t, τ ); this is subtracted
from the product of B̂( y, τ ) and (2.14), and the result is integrated over −∞ < τ < ∞
and over the infinite fluid region V within the duct flow. By making use of the mean
flow continuity equation div(ρv) = 0, it is found that

ρB̂(x, t) =

∫ ∞

−∞

∂

∂τ

∫
V

ρ

c2

(
B̂

DG

Dτ
− G

DB̂

Dτ

)
d3 y dτ

+

∫ ∞

−∞

∫
V

∂

∂yj

(
ρG

∂B̂

∂yj

− ρB̂
∂G

∂yj

)
d3 y dτ

+

∫ ∞

−∞

∫
V

∂

∂yj

(
G ρ

[
(ω ∧ v)j − (T − To)

∂s

∂yj

])
d3 y dτ

−
∫ ∞

−∞

∫
V

∂G

∂yj

ρ

[
(ω ∧ v)j − (T − To)

∂s

∂yj

]
d3 y dτ. (2.15)

The first integral on the right-hand side vanishes identically because G and DG/Dτ

are both zero at τ = +∞, and causality implies that B̂ and DB̂/Dτ are null as τ → −∞,
at times τ prior to the passage of the entropy slug through the nozzle. The second
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and third integrals are simplified by use of the divergence theorem, and the result is
expressed in the form

ρB̂(x, t) =

∫ ∞

−∞

∮
S

ρ

[
B̂

∂G

∂ y
− G

(
∂B̂

∂ y
+ ω ∧ v − (T − To)

∂s

∂ y

)]
· dS( y) dτ

−
∫ ∞

−∞

∫
V

ρ
∂G

∂ y
·
(

ω ∧ v − (T − To)
∂s

∂ y

)
d3 y dτ, (2.16)

where the surface integral is over the walls S of the upstream and downstream ducts
and of the nozzle, with the surface element dS( y) directed into the fluid (causality
and the definition of G rule out the possibility of any additional contributions from
cross-sectional surface elements within the ducts at x ′ = ±∞).

By requiring Green’s function to satisfy (2.14) subject to the condition that
∂G/∂yn = 0 on S, where yn is a local normal coordinate on S, Crocco’s equation
(2.1) and the relation ∇Bo = To∇s permit the reduction of (2.16) to

ρB̂(x, t) =

∫ ∞

−∞

∮
S

[
ρ G

∂v

∂τ
− η

∂G

∂ y
∧ ω

]
· dS( y) dτ

−
∫ ∞

−∞

∫
V

ρ
∂G

∂ y
·
(

ω ∧ v − (T − To)
∂s

∂ y

)
d3 y dτ. (2.17)

The surface integral can be discarded for isentropic flow in a rigid-walled duct.
The remaining volume integral represents the leading approximation to the sound
generated during the passage of the hot slug through the nozzle. The anomalous
retention of the vortex source ω ∧v, when the frictional contribution from the surface
integral in (2.17) has been discarded, is justified by the observation that although
surface frictional forces over an extensive stretch of the wall S would normally
produce a relatively low-frequency background contribution to the overall sound (as
in Howe et al. 2006, for example), there exists the possibility of catastrophic and
high-frequency production of vorticity by flow separation in the nozzle as a result of
surface friction acting over a short section of the wall, and this could considerably
influence the amplitude of the entropy noise.

The reduced form of (2.17) is used below to calculate the sound radiated within the
duct at large distances from the nozzle. The mean flow Mach number far upstream and
downstream of the nozzle satisfies M2 � 1; this is the case in the experiments reported
by Bake et al. (2009a, b), where the upstream Mach number Mo = Uo/co ∼ 0.03. For
subsonic nozzle flow the downstream Mach number is also negligible. In both cases
the acoustic component of the pressure p � ρB̂ and (2.17) can be applied in the form

p(x, t) = −
∫ ∞

−∞

∫
V

ρ
∂G

∂ y
·
(

ω ∧ v − (T − To)
∂s

∂ y

)
d3 y dτ, |x| → ∞. (2.18)

3. Green’s function
3.1. The compact approximation

An expression for the Green’s function required to evaluate the solution (2.18) is
derived in this section through the compact approximation, where the characteristic
wavelength of the indirect combustion noise is much larger than the axial extent
of the nozzle. This is appropriate for the subsonic experimental conditions of the
experiments of Bake et al. (2007, 2009a, b), where the principal components of
the indirect combustion noise produced in a nozzle of length ∼0.3 m occurred
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L
g(τ – x′/co)

f (τ + x′/co)

U(x′)

A2
A1

x

Figure 2. The regions L, N and R used in the definition of the compact Green’s function.

at frequencies less than about 200 Hz. In these circumstances the unsteady motion
determined by G(x, y, t, τ ) (as a function of y and τ ) within the nozzle region N of
figure 2 can be regarded as quasi-static, provided the field point x on the right-hand
side of (2.14) is several duct diameters from the nozzle. The details of the calculation
of G are outlined in §§ 3.2 and 3.3; readers primarily concerned with applications to
(2.18) may proceed directly to § 3.4 for a summary of the relevant formulae for G.

3.2. Functional representations of G(x, y, t, τ ) when x is large and positive

Consider the determination of G(x, y, t, τ ) governed by (2.14) when x is downstream
of the nozzle, as indicated schematically in figure 2. In the compact approximation
the acoustic wavelengths are much larger than the duct diameter, and the flow duct
is partitioned into the upstream and downstream regions respectively denoted by L
and R in figure 2, where the mean flow Mach number M = Mo is negligible, and the
nozzle region N, where M will be permitted to assume high subsonic values.

The mean flow can be ignored in the downstream duct, where (2.14) becomes(
1

c2
o

∂2

∂τ 2
− ∂2

∂y2
j

)
G = δ(x − y)δ(t − τ ), G = 0 for τ > t, (3.1)

where co is the locally uniform speed of sound in fluid of temperature To (taken to
be the same as the undisturbed temperature in the upstream duct). Recalling the
notation y =(x ′, y ′, z′), with the x ′ axis in the mean flow direction along the axis of
symmetry, it can be seen that in the long-wavelength approximation the solution in
this region can be written as

G =
co

2A2

H

(
t − τ − |x − x ′|

co

)
+ f

(
τ +

x ′

co

)
, (3.2)

provided |x ′ − x| exceeds one or two duct diameters (Howe 1998). The first term on
the right-hand side, involving the Heaviside step function, is just the corresponding
compact Green’s function in the absence of the nozzle, i.e. for an infinite duct of
uniform cross-section A2. The plane wave f (τ + x ′/co) arriving from x ′ = + ∞ takes
account of the presence of the nozzle on the acoustic field ‘imploding’ into y = x at
time τ = t .

We put G = GR in region R (where x ′ < x) between x and the nozzle, where the
approximation (3.2) is applicable, and write

GR =
co

2A2

H

(
[t] − τ +

x ′

co

)
+ f

(
τ +

x ′

co

)
, (3.3)

where [t] = t − x/co.
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Similarly, in the upstream region L of uniform cross-section A1 we can set G = GL,
where

GL = g

(
τ − x ′

co

)
(3.4)

is a plane wave arriving from x ′ = −∞.
The quasi-static behaviour within the nozzle N is represented by G =GN , where

GN = Φ(τ ) + Ψ (τ )Y ( y). (3.5)

The functions Φ(τ ), Ψ (τ ) are to be determined, and Y ( y) must have vanishing normal
derivative ∂Y/∂yn on S and be a solution of the time-independent, homogeneous form
of (2.14), i.e. of

div

(
v

c2
div(ρvY ) − ρ∇Y

)
= 0, (3.6)

where ρ, c, v take their respective steady-state values ρ( y), c( y), v( y), with
div(ρv) = 0. This equation is simplified in the quasi-one-dimensional approximation
by putting

div Z =
1

A(x ′)

∂

∂x ′

∫
A(x′)

Z1 dy ′ dz′ � 1

A(x ′)

∂

∂x ′ (A(x ′) Z1(x
′)) (3.7)

for a vector field Z = (Z1, Z2, Z3) that has vanishing normal component on the duct
and nozzle wall, where the integration with respect to y ′, z′ is over the cross-section
A(x ′) of the duct, and variations of Z1(x

′) over this cross-section are assumed to be
small.

Hence, (3.6) becomes

∂

∂x ′

(
ρA(x ′)(1 − M2)

∂Y

∂x ′

)
= 0, M =

U (x ′)

c(x ′)
, (3.8)

where U (x ′) is the cross-sectional mean of the axial velocity v1 at x ′. Therefore we
can take

Y ≡ Y (x ′) =

∫ x′

0

ρoAt dξ

ρ(ξ )A(ξ )[1 − M2(ξ )]
, (3.9)

where ρ(ξ ) and M(ξ ) are the mean density and Mach number at x ′ = ξ in the duct and
nozzle and At is the minimum cross-section at the nozzle throat. This normalization
of Y implies that

Y (x ′) ∼

⎧⎪⎨
⎪⎩

At

A2

(x ′ + �2), x ′ → +∞,

At

A1

(x ′ − �1), x ′ → −∞,

(3.10)

where the ‘end corrections’ �1, �2 (Rayleigh 1945; Howe 1998) are given by

�1 =

∫ 0

−∞

(
ρoA1

ρA[1 − M2]
− 1

)
dξ, �2 =

∫ ∞

0

(
ρoA2

ρA[1 − M2]
− 1

)
dξ. (3.11)

The order of magnitude of �1, �2 ∼ ℘A1,2/At � ℘, where ℘ is similar to the maximum
radius of curvature of the duct wall at the throat.

3.3. Equations for Φ, Ψ, f, g

The functional forms of Φ, Ψ, f, g are obtained in the compact approximation
by equating the expansions of GL, GN, GR to first order in x ′ in common
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intervals of validity (Howe 1998, 2002; Howe & McGowan 2007). Thus in the
region just downstream of the nozzle, at distances x ′ that are small compared with
the characteristic acoustic wavelength in the entropy noise problem and where M � 1,
we have GN � GR , so that (3.3), (3.5) and (3.10) supply

Φ +
Ψ At

A2

(x ′ + �2) =
co

2A2

H ([t] − τ ) +
x ′

2A2

δ([t] − τ ) + f (τ ) +
x ′

co

f ′(τ ), (3.12)

where f ′ = df/dτ . Therefore,

Φ +
Ψ At�2

A2

= f (τ ) +
co

2A2

H ([t] − τ ),

coΨ At

A2

= f ′(τ ) +
co

2A2

δ([t] − τ ).

⎫⎪⎬
⎪⎭ (3.13)

Similarly, by matching the expansions of GN and GL upstream of the nozzle (where
M2 � 1), we find

Φ − Ψ At�1

A1

= g(τ ),

coΨ At

A1

= −g′(τ ).

⎫⎪⎬
⎪⎭ (3.14)

The system of equations (3.13) and (3.14) is readily solved, subject to the condition
that the solution vanishes everywhere when τ > t . In particular, we find

Φ =
co

A1 + A2

H

(
[t] − τ − A1(�2 − �1)

co(A1 + A2)

)
,

Ψ =
A1

At (A1 + A2)
δ

(
[t] − τ − (A1�2 + A2�1)

co(A1 + A2)

)
.

⎫⎪⎪⎬
⎪⎪⎭ (3.15)

The substitution of these expressions into (3.5) determines the behaviour of G ≡
GN (x, y, t, τ ) when y is in the vicinity of the nozzle for an observer at x and at time
t in the region far downstream of the nozzle. The representation (2.18) of the entropy
noise indicates that only the space-dependent (‘dipole’) component Ψ (τ )Y ( y) of (3.5)
is required to evaluate the sound. On this understanding it is sufficient to adopt the
following approximation for G for entropy sources in the nozzle region:

G(x, y, t, τ ) � A1Y (x ′)

At (A1 + A2)
δ

(
t − τ − x + �′

co

)
, x → +∞, (3.16)

where Y (x ′) is defined as in (3.9) and

�′ =
A1�2 + A2�1

A1 + A2

. (3.17)

3.4. Compact Green’s function for the calculation of subsonic indirect combustion noise

A result similar to (3.16) is obtained for observer locations x within the upstream
duct. These various results for the effective compact Green’s function for evaluation
of the indirect combustion noise produced in the nozzle are summarized here for ease
of reference:

G(x, y, t, τ ) � sgn(x)A(−x)Y (x ′)

At (A1 + A2)
δ

(
t − τ−|x| + �′

co

)
, |x| → +∞, (3.18)
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where x = (x, y, z); y = (x ′, y ′, z′); �′ is defined as in (3.17) and (3.11); and

Y (x ′) =

∫ x′

0

ρoAt dξ

ρ(ξ )A(ξ )[1 − M2(ξ )]
. (3.19)

4. Indirect combustion noise generated by an idealized hot slug
4.1. The entropy and vortex sound sources

The integral (2.18) for the acoustic pressure generated by the hot slug can now be
evaluated. The passage of the temperature inhomogeneity through the nozzle must
produce small-scale turbulence fluctuations in the diverging section. Proper design of
the ‘diffuser’ section of the nozzle ensures that the Reynolds number is usually large
enough and the angle of divergence of the diffuser small enough to prevent large-scale
separation (Castillo, Wang & George 2004; Sparrow, Abraham & Minkowycz 2009),
and it is only in exceptional cases that separation and ‘jetting’ occurs, but when it
happens it can significantly modify the amplitude of the sound generated by the slug.

Both of these possible contributors to the indirect combustion noise are considered
by writing the overall acoustic pressure in the form

p = ps + pω, (4.1)

where the pressures on the right-hand side correspond respectively to the entropy
gradient source ∂s/∂ y and the vortex sound source ω ∧ v in (2.18).

4.2. The entropy sound ps

Consider the simple slug model of figure 1 and the sound radiated into the downstream
duct. The entropy gradient ∂s/∂ y is given by (2.10), and x > 0 in formula (3.18) for
the compact Green’s function. Then

ps(x, t) �
∫ ∞

−∞

∫
V

ρ(T − To)
∂s

∂x ′
∂G

∂x ′ d3 y dτ

= ρo

A1

(A1 + A2)

∫∫ ∞

−∞

(
(T − To)

1 − M2(x ′)

)
∂s

∂x ′ (x
′, τ ) δ([t] − τ ) dx ′ dτ (4.2a)

= ρocp�T
A1

(A1 + A2)

∫ ∞

−∞

(
T (x ′)/To − 1

1 − M2(x ′)

)(
δ(xB([t]) − x ′) − δ(xF ([t]) − x ′)

)
dx ′,

(4.2b)

where [t] = t − (x + �′)/co is the effective retarded time.
This formula shows how the entropy sound received at time t is determined by the

interaction of the entropy gradient at the retarded positions of the ends of the slug
with the background mean flow variation of

T/To − 1

1 − M2
=

− (γ − 1)

2
M2(

1 +
(γ − 1)

2
M2

)
(1 − M2)

, (4.3)

where the right-hand side is applicable for a perfect non-reacting gas for which γ is
the ratio of the specific heats (Landau & Lifshitz 1987; Liepmann & Roshko 2002),
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taken to be equal to 1.4 for air. Making this substitution in (4.2), and introducing the
reference pressure po = ρoRTo of the flow far from the nozzle where the mean flow
Mach number is negligible, we find

ps

po

(x, t) � �T

To

A1

(A1 + A2)

⎛
⎜⎜⎝
⎡
⎢⎢⎣

γ

2
M2(

1 +
(γ − 1)

2
M2

)
(1 − M2)

⎤
⎥⎥⎦

F

−

⎡
⎢⎢⎣

γ

2
M2(

1 +
(γ − 1)

2
M2

)
(1 − M2)

⎤
⎥⎥⎦

B

⎞
⎟⎟⎠ , x → +∞, (4.4)

where the square brackets [ ] denote evaluation respectively at the retarded positions
of the front and back faces of the entropy slug. These terms have very large peak
values at the nozzle throat where M ∼ Mt is a maximum.

The downstream acoustic pressure profile accordingly consists of a positive pressure
pulse generated as the front of the slug passes through the throat followed by a
negative pulse of equal amplitude produced during the passage of the rear end of
the slug. This is consistent with an increase in forward speed at the front of the
slug, relative to its value for homogeneous flow at the higher ambient mean density,
causing the nozzle throat to behave as an acoustic volume source of positive strength
that radiates ahead of the slug. Similarly, relaxation of the increased forward speed
during passage of the rear end of the slug causes the throat to behave as a negative
acoustic source that radiates as an expansion wave. For subsonic flow each of the
terms in square brackets in (4.4) attains its maximum value at the nozzle throat,
where M is a maximum. The formula is valid only at subsonic Mach numbers in the
approximation of (3.8).

An illustration of the waveform of the acoustic pressure predicted by (4.4) is shown
in figure 3 for a maximum nozzle Mach number Mt = 0.5. The calculation has been
performed for duct and nozzle-throat radii

R1 = 15 mm, R2 = 20 mm, Rt = 3.75 mm. (4.5)

These coincide with the corresponding values in the experiments of Bake et al.
(2009a, b). The axial interval occupied by the nozzle is −�n < x <�p , and we take
�n = 13 mm ( = 0.867R1) for the length of the convergent section, as in the experiment.
However, for the discussion of this section the length �p of the diffuser has been set at
�p = 4�n = 52 mm, much shorter than the 253 mm diffuser used in the experiment. For
these dimensions mean flow separation may occur in the nozzle, and the implications
of this possibility are discussed in § 4.3. The radius r(x) of the nozzle cross-section is
given by

r =

{
Rt + (R1 − Rt )(x/�n)

2, −�n < x � 0,

Rt + (R2 − Rt )(x/�p)2, 0 � x < �p.
(4.6)

The front and back faces of the slug convect through the nozzle at approximately the
speed U (x) of the undisturbed mean flow, so that, for example, the position xF (t) of
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Figure 3. Typical downstream acoustic pressure profile (4.4) produced by the passage of an
idealized entropy slug through the converging–diverging nozzle defined by (4.5) and (4.6) when
Mt =0.5.

the front at time t is determined by the equation

1

Uo

dxF

dt
=

U (xF )

Uo

=
c

co

M(xF )

Mo

=
M(xF )

Mo

(
1 +

γ − 1

2
M2(xF )

)1/2
, (4.7)

where (when M2
o � 1) the mean flow Mach number M(x) is determined in terms

of the cross-sectional area A(x) by the quasi-one-dimensional formula for steady
isentropic flow (Landau & Lifshitz 1987; Liepmann & Roshko 2002),

M(x)(
1 +

γ − 1

2
M2(x)

)(γ+1)/2(γ −1)
=

MoA1

A(x)
. (4.8)

Equation (4.7) is readily solved numerically by Runge–Kutta integration.
In figure 3 the normalized acoustic pressure psTo/po�T radiated into the

downstream duct is plotted against the non-dimensional retarded time Uo[t]/R1,
where time is measured from the instant at which the front of the slug passes through
the throat. In the present case the nozzle-throat Mach number Mt = 0.5 corresponds
to a uniform flow in the upstream duct at speed Uo � 9.2 m s−1. The slug length has
been set arbitrarily to equal 0.6R1 = 9 mm, so that the positive and negative peaks
of the pressure wave are separated by a retarded time difference Uo[δt]/R1 � 0.6,
corresponding to the difference in the arrival times at the throat of the front and
back faces of the slug.

Figure 4 illustrates the predicted variation of the peak acoustic pressure of the
first pulse (at Uo[t]/R1 ∼ 0) with the nozzle-throat Mach number Mt (calculated by
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Figure 4. Dependence on throat Mach number Mt of the indirect entropy-generated sound in
the converging–diverging nozzle defined by (4.5) and (4.6): continuous line, peak downstream
pressure ps for an idealized entropy slug (see (4.4)); dashed line, peak downstream pressure
ps + pω for the slug accompanied by vortex shedding in the nozzle (see (4.18)).

putting M = Mt in the first bracketed term [·]F of (4.4)). Evidently the peak pressure
increases like M2

t until about Mt ∼ 0.5, after which nonlinearity becomes important.

4.3. Contribution from separated flow in the diffuser

Isentropic theory ignores the production of vorticity within the flow and small-scale
turbulence generated in the boundary layers. However, it would not be permissible to
neglect the shedding of large-scale coherent distributions of vorticity from the walls,
i.e. separation. This should not occur in a properly designed converging–diverging
nozzle, except possibly at lower Reynolds numbers outside the design envelope. For
the short, wide-angle diffuser of § 4.2 (of divergence angle ∼35◦) separation might
be expected to occur in the diffuser over a wide range of large Reynolds numbers
(Castillo et al. 2004; Sparrow et al. 2009), leading to jet formation in which vorticity
in the jet shear layer is modulated in strength by the passage of the hot slug. It
is difficult to give a fully satisfactory theory of sound production by this vorticity,
but a very approximate prediction can be made by consideration of the simplified
model illustrated in figure 5(a), where separation is assumed to occur at the throat,
producing a uniform jet of circular cross-section and area � At .

The vortex source term ω ∧ v in (2.18) can be estimated by the method of Howe
(1998, § 3.2.3) and Howe & McGowan (2007), who assumed that the large-scale
coherent jet vorticity is confined to a free shear layer of infinitesimal thickness – a
cylindrical vortex sheet. The vortex sheet has circulation Uj per unit length of the jet,
where Uj (x, t) is the jet speed, which is uniform over the jet cross-section, and the shear
layer vorticity is convected by the flow at speed Uj/2. Then ω ∧ v = (1/2)U 2

j δ(s⊥)n,
where s⊥ is measured from the vortex sheet in the direction of its outward unit normal
n (figure 5a), so that the vortex sound pressure pω is given by

pω � −1

2

∫ ∞

−∞

∫
Sj

ρU 2
j

∂G

∂yn

dS( y) dτ, (4.9)



Indirect combustion noise 281

xB (t)

(b)

(a)

xF (t)

Jet

Uj

Uj

Sj
ω∧v

Σ∞Σt

Σt

Figure 5. (a) Simplified model for estimating the vortex sound produced when separation
and jet formation occur at the nozzle. (b) Illustration of the streamline pattern defined by the
vector field ∇Y .

where the surface integral is over the cylindrical vortex sheet Sj . It may be verified
from (3.3) and (3.18) that only that part of the jet that is within about one duct
diameter from the nozzle can contribute to the integral, where G can be taken in the
form given in (3.18), so that

pω(x, t) � − A1

2At (A1 + A2)

∫
Sj

U 2
j (x ′, [t]) ρ

∂Y

∂yn

dS( y), x → +∞. (4.10)

Indeed, the main contribution to the integral is from those regions of Sj where
∇Y ( y) has a significant component normal to the cylindrical jet shear layer (see
figure 5b). Because ∂Y/∂yn = 0 on the nozzle wall, ∂Y/∂yn = 0 on Sj only within a
short interval just downstream of the throat. A qualitative picture of this is obtained
by considering the family of ‘streamlines’ of the ‘flow’ whose velocity is ∇Y when
M = 0 (or M2 � 1) in the definition (3.9), when Y satisfies ∇2Y = 0, the limiting
form of (3.6) at M =0. The corresponding Stokes stream function for this flow
is ψ(x, � ) � (1/2)At�

2/A(x) (where � is the radial distance from the x axis of
symmetry; see Batchelor 1967; Landau & Lifshitz 1987). The pattern of the family
of streamlines, ψ(x, � ) = constant, is depicted in figure 5(b); they diverge rapidly
downstream of the throat and are essentially parallel to the jet within a distance of
about one duct diameter.

At the lower frequencies that are known to dominate indirect combustion noise it is
permissible to neglect the variation with x ′ of Uj (x

′, [t]) over the region of integration
in (4.10), which becomes

pω(x, t) � −
A1U

2
j (0, [t])

2At (A1 + A2)

∫
Sj

ρ
∂Y

∂yn

dS( y), x → +∞. (4.11)
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The remaining integral is evaluated by integrating (3.6) over the volume of the jet
between the cross-sections Σt and Σ∞ indicated in figure 5(a) and applying the
divergence theorem. This yields (using the approximation (3.9))∫

Sj

ρ
∂Y

∂yn

dS( y) =

∫
Σt+Σ∞

(M2 − 1)ρ
∂Y

∂yn

dS � ρoAt , (4.12)

so that the vortex sound contribution becomes

pω(x, t) � −
A1ρoU

2
j (0, [t])

2(A1 + A2)
, x → +∞. (4.13)

To make explicit numerical estimates it remains to evaluate the time-dependent
component of the jet speed Uj (0, [t]) at the throat.

4.4. The overall indirect combustion noise

The sound pressure radiated downstream of the nozzle now becomes

p(x, t) = ps(x, t) + pω(x, t) (4.14)

in which the terms on the right-hand side are given respectively by (4.4) and (4.13),
which define plane acoustic waves having wavelengths much larger than the diameter
of the downstream duct, where the density and sound speed are respectively equal to
ρo and co.

Now

Uj (0, [t]) = Ut + Us, (4.15)

where Ut is the mean flow velocity at the throat and Us ≡ Us([t]) is the perturbation
produced by the production of sound. When the acoustic wavelength is large compared
with all other dimensions of the problem the velocity Us can be estimated in terms
of the limiting value of the

acoustic particle velocity ≡ V (t) = lim
x→+0

p(x, t)

ρoco

(4.16)

by equating the unsteady volume flux V A2 in the acoustically compact region just
downstream of the nozzle to the jet volume flux UsAt (Lighthill 1978). Then, the
linearized, unsteady component of (4.13) (obtained by replacing U 2

j by 2UsUt ) and
the near-field form of (4.14) supply

V (t) � ps(0, t)

ρoco

[
1 +

A1

(A1 + A2)

A2

At

Mt

(
1 +

(γ − 1)

2
M2

t

)1/2
] . (4.17)

But the acoustic pressure in the downstream region p(x, t) = ρocoV ([t]). Hence the
indirect combustion noise (4.14) with inclusion of the effects of separation at the
nozzle is given by

p(x, t) � ps(x, t)[
1 +

A1

(A1 + A2)

A2

At

Mt

(
1 +

(γ − 1)

2
M2

t

)1/2
] , x → +∞. (4.18)

The effect of vortex shedding is therefore to produce a uniform decrease in the
overall sound pressure relative to ps(x, t), generated when separation is absent or
ignored, by a factor determined by the denominator in this formula. In particular
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Figure 6. The converging–diverging nozzle used in the experiments of Bake et al. (2009b).
The lower part of the figure depicts changes in the entropy gradient in the front transition
region at x ∼ xF (t) as it convects through the nozzle, for a case in which the initial gradient
(a) is constant. The minimum in case (b) occurs at the throat at x/R1 = 0. Cases (c) and
(d ) illustrate the progressive contraction of the transition region within the diffuser, the
entropy gradient at (d ) in the uniform downstream duct relaxing to a new constant value. For
Mt =0.6 and an initial wave front rise time, lF /Uo = 3 ms.

there is a systematic reduction in the maximum acoustic pressure pmax produced as
the front face of the entropy slug passes through the throat, as indicated by the
dashed line in figure 4. At lower Mach numbers the maximum pressure is now seen
to vary approximately as M1.4

t .
This conclusion is of interest because (as discussed in more detail in § 5) the

experiments of Bake et al. (2009a, b) revealed that the maximum entropy noise sound
pressure peaks at a nozzle Mach number Mt ∼ 0.6, beyond which it has a tendency
to decrease. The results of figure 4 imply that although vorticity production reduces
the acoustic amplitudes, it cannot apparently account for the observed progressive
decline at high Mach numbers.

5. Indirect combustion noise measured by Bake et al. (2009b)
The experiments of Bake et al. (2009b) were performed using a nozzle similar to

that described in § 4 (with dimensions (4.5)), but with the short downstream section
replaced by a long conical diffuser of length �p = 253 mm, as illustrated in the upper
part of figure 6. A succession of entropy slugs was produced by passing the air
through a bank of pulsed electrical elements in the upstream duct, which heated
the flow periodically every second for 100 ms. Through this the axial temperature
distribution within the slug could be ‘shaped’ by imposing suitable time delays
between different heating elements. However, in their comprehensive discussion of the
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experiments, Bake et al. (2009b) supplied details for only two slugs having a nominally
uniform entropy excess ∼cp�T/To, corresponding to the ideal model defined by (2.8),
except that the step-like discontinuities in specific entropy at the front and back faces
of the slug now occur smoothly over transition regions of finite widths. It will be
seen below that acoustic predictions based on the idealized model (2.8) agree with
experiment only at very low Mach numbers; at higher Mach numbers it is necessary
to take account of the finite ‘rise time’ of the entropy wave profile at its ends.

It will be assumed for simplicity that the temperature varies linearly across these
transition zones. The initial variation of the perturbation entropy across, for example,
the front of the slug can then be represented approximately by the formula

s � cp�T

To

(xF (0) − x)

lF (0)
, xF (0) − lF (0) < x < xF (0), (5.1)

where lF (0) is the width of the transition region when the slug is upstream of the
nozzle at some initial instant that we take to correspond to t = 0. This length will
change during passage through the nozzle because the mean flow convection velocities
are different at the front x = xF (t) and the back x = xF (t) − lF (t) of the transition
region. The positions of these points at time t > 0 are easily found by integration of
an equation of the form (4.7).

The sound produced in the downstream duct during the passage of the entropy
wavefront through the nozzle is calculated using (4.2a) in terms of the entropy gradient
at the retarded position of the front transition region. The gradient is determined by
appeal to the mean flow Jacobian formula ρ(x ′)A(x ′) dx ′ = ρoA1 dx relating the length
differential dx ′ of a fluid element at x ′ in the nozzle at time τ to its length dx at the
initial position of the transition zone at time τ = 0, so that

∂s

∂x ′ (x
′, τ ) =

∂s

∂x
(x, 0)

ρ(x ′)A(x ′)

ρoA1

≡ − cp�T

lF (0)To

ρ(x ′)A(x ′)

ρoA1

, xF (τ ) − lF (τ ) < x ′ < xF (τ ).

(5.2)

Hence, using (4.3) and the isentropic mean flow relation (Liepmann & Roshko 2002)

ρ(x ′)A(x ′)

ρoA1

� Mo

M

(
1 +

(γ − 1)

2
M2

)1/2

, where M = M(x ′) and M2
o � 1, (5.3)

we find

ps

po

(x, t) � �T

To

A1

(A1 + A2)

γMo

2lF (0)

∫ xF ([t])

xF ([t])−lF ([t])

M dx ′(
1 +

(γ − 1)

2
M2

)1/2

(1 − M2)

, x → +∞.

(5.4)

This formula determines the positive acoustic pressure pulse generated as the slug
passes through the nozzle, which exhibits a wave profile that resembles, but is generally
much broader than, the positive pressure pulse of figure 3 for the idealized slug. A
similar expression can be written for the expansion wave generated by the rear
transition region at x ∼ xB(t).

When lF (0) → 0, (5.4) yields predictions for the peak acoustic pressure that coincide
with the curve labelled ps in figure 4, for the idealized entropy slug with the gradient
given by (2.10). When lF = 0, however, there are significant changes in both the
amplitude and the detailed wave profile of the sound, particularly at higher Mach
numbers. This is because the transition regions at the front and back faces of the
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Figure 7. The predicted peak acoustic pressure (continuous line) of the indirect entropy
sound generated by slug flow through a converging–diverging nozzle of the type used in
the experiments of Bake et al. (2009b) for different initial entropy wavefront rise times δtF ;
triangles, the peak pressure measured by Bake et al. (2009b); dashed line, the predicted peak
pressure when the initial rise time δtF = 3(Mt/0.6) ms.

slug are stretched out along the nozzle because of the rapid spatial variations
of the mean flow speed in the neighbourhood of the throat. The stretching of
the front transition region and the corresponding changes in the entropy gradient
∂s/∂x within the transition zone are illustrated in figure 6 when the throat Mach
number Mt =0.6 (so that Uo � 10.35 m s−1) and when the initial width lF (0) � 30 mm
(≡2R1) in the upstream duct, where the initial non-dimensional entropy gradient
−(To/cp�T )R1∂s/∂x ≡ R1/lF (0) � 0.49. In case (a) of figure 6 the front and the back
of the transition region are respectively at x/R1 = −5 and x/R1 = −7.

In case (b) of figure 6 the front transition region is stretched over more than
three duct diameters between x/R1 � −2.06 and x/R1 � +4.13, causing the entropy
gradient to have a sharp and small minimum at the throat, i.e. at the precise location
at which the peak sound pressure is generated by an idealized, sharp-fronted entropy
slug. The behaviour of the transition region at later times is not acoustically significant,
but cases (c) and (d ) of figure 6 show how the transition zone gradually contracts as
the mean flow velocity decreases at the front x = xF , and the entropy gradient across
the front progressively increases as it traverses the diffuser, finally attaining a uniform
non-dimensional value ∼0.86 = (R1/lF (0))(A2/A1).

This stretching of the transition regions is increased further at higher Mach numbers
(so that gradient amplitudes are reduced relative to those shown in figure 6), and this
tends to counteract the growth in the maximum acoustic wave amplitude associated
with the factor 1/(1 − M2) in the integral of (5.4). This is illustrated in figure 7,
where the variation of the maximum acoustic pressure radiated downstream is plotted
(continuous line) as a function of the throat Mach number for different initial values of
the entropy wavefront rise time δtF = lF (0)/Uo, namely for δtF =0, 0.3, 3.0, 30.0 ms.
The case δtF = 0 corresponds to the idealized hot slug of § 4. The results confirm the
dramatic reduction in wave amplitude produced by an elongated transition region,
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exacerbated by stretching of the front in the nozzle. Note that although the present
theory is formally inapplicable when Mt → 1, the plots for δtF > 0 do not exhibit
singular behaviour associated with the singularity of (5.4) at M(x ′) = 1 at the throat.
This is because the growth of the singularity is countered by stretching, which causes
the entropy gradient to be very small at the throat, and it is not until Mt is very close
to unity that the singularity becomes apparent.

Bake et al. (2009b) presented results for Mt = 0.7, 1 for which the initial rise
times δtF appear to be respectively of orders 10 and 30 ms. They also presented
experimental data for the variation of the peak pressure with throat Mach number,
which is reproduced in figure 7 (triangles). Actually the data points do not fall on
a single curve, and our plot is a ‘best fit’, corresponding the curve labelled (in our
notation) M0.74

t in figure 8 of Bake et al. (2009b) and its extrapolation to Mt ∼ 1.
The experimental data exhibit a weak maximum near Mt ∼ 0.6, and the subsequent

decrease in peak pressure at higher Mach numbers appears anomalous and has not
hitherto been explained by the numerical simulations reported in Bake et al. (2009b).
They have given no detailed information about the geometrical properties of the
entropy slugs. In particular, no data are available for the rise time δtF of the entropy
wavefront. However, the very limited discussion of this in Bake et al. (2009b) suggests
that in the experiments δtF increases with the throat Mach number Mt . According to
figure 7 the measured peak pressure at low Mach numbers is close to those predicted
by ideal slug theory and by (5.4) for δtF = 0.3 ms. The measurements evidently imply
that δtF increases with Mt , and the simple empirical model

δtF � 0.003 × Mt

0.6
(in seconds) (5.5)

appears to represent well what might be deduced from the intersection of the
measurement curve in figure 7 with the prediction curves for δtF = 0.3 and 3.0 ms.
The formula supplies δtF = 3 ms at Mt = 0.6; at Mt = 0.1 it yields δtF = 0.5 ms.

The dashed line curve in figure 7 is the prediction of (5.4) when the initial rise time
is given by (5.5). The agreement up to Mt = 0.6 is to be expected. More surprisingly,
perhaps, is the flattening off of the predictions above Mt = 0.6, which is also in accord
with experiment.

6. Conclusion
Indirect combustion noise is associated with the passage of nominally quiescent

temperature/entropy inhomogeneities or ‘hot spots’ through regions of rapidly
accelerated mean flow. The subject has been studied for many years and is known
to be important for a proper understanding of jet engine noise. The recent canonical
experiments performed by Bake et al. (2009b) using an entropy wave generator
coupled with a converging–diverging nozzle have aroused renewed interest in the
theory, in particular because of the apparent anomalous measured behaviour,
according to which the sound level produced by a slug of hot gas is found to
peak at a relatively low nozzle Mach number of about 0.6. Our application of the
acoustic analogy theory to a simplified version of this problem indicates that two
important mechanisms control the amplitude of the sound produced by a nominally
uniform slug of hot gas. First, in cases in which flow separation occurs in the diffuser
section of the nozzle, manifested by the formation of a jet whose large-scale shear
layer vorticity is modulated by the hot slug, the vortex sound produced is strongly
correlated with the entropy noise and can dramatically reduce the overall sound level,
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especially at higher subsonic Mach numbers, where the peak acoustic power can
be decreased by 10–20 dB. Second, streamwise deformation of the hot slug during
rapidly varying acceleration in the mean nozzle flow significantly reduces the entropy
gradients within the front and rear interfaces, especially in the vicinity of the throat,
which is the principal source of the entropy noise. It appears that this rapid distortion
of the flow is responsible for the decrease in acoustic pressure observed by Bake et al.
(2009b) at high subsonic Mach numbers. However, confirmation of this conjecture
will probably require many of their tests to be repeated to permit data concerning
slug distortion to be properly quantified.

The author expresses his gratitude to Dr Friedrich Bake for supplying details of
the entropy wave generator used in the experiments of Bake et al. (2009b).
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